

For

A-Z FOUNDATION: SCHOOL AND COLLEGE - ABBASPUR, AJK

GEOTECHNICAL STUDY FOR

REPORT ON SUB-SOIL INVESTIGATION FOR THE CONSTRUCTION OF THE PROPOSED SCHOOL AND COLLEGE ABBASPUR AZAD KASHMIR

Office: #15, 3rd Floor, Silver city Plaza, G-11 Markaz Islamabad.

Contact Nos. 0300-3926433, 0346-5999169, E-mail: zeeshan.mes10@gmail.com

TABLE OF CONTENTS

<u>S. No.</u>	CONTENT
1.0	INTRODUCTION
2.0	PURPOSE AND SCOPE OF WORK
3.0	GEOLOGY AND SEISMICITY OF THE AREA
4.0	FIELD INVESTIGATION ACTIVITIES
5.0	LABORATORY TESTING
6.0	GEOTECHNICAL EVALUATIONS
7.0	RECOMMENDATIONS FOR FOUNDATION DESIGN

(APPENDICES)

Appendix – A, Field Bore Log

Appendix – B, Sieve Analysis

Appendix – C, Direct Shear Test

Appendix – D, Unconfined Compression Test

REPORT ON GEOTECHNICAL INVESTIGATIONS

CONSTRUCTION OF PROPOSED A-Z FOUNDATION SCHOOL ABBASPUR KASHMIR

1. INTRODUCTION

1.1 General

A-Z Foundation School Multi storied building is to be constructed in Abbaspur Kashmir. This report presents the findings of the geotechnical investigation conducted at the site of the proposed building site. The work of geotechnical investigation was entrusted to *M/s GEO DEEP ROCK GEOTECH ENGINEERING SERVICES*.

The geotechnical investigation program comprised field investigations in the form of performing Digital SPT through Electrical Resistivity Survey (ERS) at the project site. The field work at the site was executed on 8th December, 2020.

1.2 Purpose and Scope of Work

The primary objective of this investigation is to determine the subsurface stratigraphy of the project site area for ascertaining the geotechnical design parameters required for the design and construction of foundation of the proposed School building. For this purpose, the following aspects have been addressed:

1. Determination of subsurface stratigraphy (soil and rock strata) within the influence zone of the proposed facility.

- 2. Determination of physical and engineering characteristics of the soil and rock formation and the location of ground water table.
- 3. Recommendation of geotechnical design parameters to be used for foundation design of the proposed facility.
- 4. Performance of geotechnical analysis to evaluate allowable bearing capacity of the foundation.

The scope of work for carrying out subsoil investigations at the project site included:

- Performance of Electrical Resistivity Survey (ERS) in three pits excavated to 2 m depth within project site.
- Preparation of geotechnical investigation report, which would include, but not limited to, subsurface stratigraphy, evaluation of geotechnical design parameters and the recommendations for:
 - Seismicity of project site
 - Evaluation of geotechnical design parameters of the site.
 - Recommendations for allowable bearing capacity

2. GEOLOGY AND SEISMICITY OF SITE AREA

2.1 Geology of Site Area

Topography

The topography of AJK can be described as mainly hilly and mountainous with valleys in between from Neelum district to Poonch district and stretches of plains to the south of Poonch district. The districts of Neelum, Muzaffarabad, Bagh, Poonch, Kotli and Sudhnuti are in the mountainous zone while Mirpur and Bhimber districts lie in the foothills. The mountainous area has thick forests on its top, and fast flowing rivers and winding streams in its valleys. The forest cover is about 566,969 hectares, which is 42.6% of the total geographical area of AJK. The landforms of AJK comprise the meta-sedimentary rocks of the Himalayan zone in its northern districts viz. Neelum, Muzaffarabad, Bagh, Poonch, Kotli and Sudhnoti. The high altitude mountainous zone with deeply cut valleys, steep slopes, often widening out into upper slopes forming alpine pasture uplands, characterizes the landform of these districts. Glaciers and avalanches are active in this region in eroding the landscape and modifying the topography. In the extreme north the high mountains of the Himalayas form the lofty ridges of the Nanga Parbat massif, with the highest point being 6,359 metres. The Sub-Himalayan zone constitutes the lower part of Neelum Valley, while the lesser Himalayas form its central part and are separated from the former by the main boundary thrust exposed near Nauseri in the south and from the Higher Himalayas in the north by the main central thrust identified near Lawat village. The Jhelum-Neelum watershed in Muzaffarabad district as well as Poonch and Sudhnoti districts form a mountainous terrain in the north, which comprises the foothill ranges of the outer Himalayas that rise to 3,758 metres above sea level in the Pir Panjal in the centre but generally form the mountain ridges averaging from 1800 to 2750 metres in height.

Location and Accessibility

Abbaspur the area under investigation is located at 33°48′50″N 73°58′40″E and an elevation of 1,161 m (3,809 ft). Abbaspur is approximately 25 kilometres (16 mi) from the Poonch city, Indian state of Jammu and Kashmir and 167 kilometres (104 mi) from Islamabad, Pakistan.

Climate

Kashmir Valley has a moderate climate, which is largely defined by its geographic location, with the towering Karakoram Range in the north, Pir Panjal Range in the south and west and Zanskar Range in the east. It can be generally described as cool in the spring and autumn, mild in the summer and cold in the winter. As a large valley with significant differences in geo-location among various districts, the weather is often cooler in the hilly areas compared to the flat lower part.

Summer is usually mild and fairly dry, but relative humidity is generally high and the nights are cool. The precipitation occurs throughout the year and no month is particularly dry. The hottest month is July (mean minimum temperature 16 °C, mean maximum temperature 32 °C) and the coldest are December–January (mean minimum temperature –15 °C, mean maximum temperature 0 °C).

Structure of the Area

The Hazara-Kashmir (HK) terrain is located on the northwestern margin of the Lesser Himalaya. The Hazara-Kashmir syntaxis (HKS) is one of the bold tectonic scars which physically isolate this terrain from rest of the Himalaya.

The Hazara– Kashmir Syntaxis is bounded to the west by the Murree Thrust which brings westerly Hazara Formation phyllites and slates over Miocene Murree Formation siltstones and sandstones. The Murree Thrust (also termed the Jhelum Fault), trends N–S in the region of Muzaffarabad before turning to the south-east further north, defining the Main Boundary Thrust (MBT) in this region (Avouac et al., 2006). It is at Muzaffrabad that the Murree Thrust intersects with the Muzaffarabad Fault (also termed Jhelum Thrust or Balakot–Bagh Fault) and its south-eastern continuation, the Tanda Fault. The Muzaffarabad Fault exhibits an opposite sense of motion to the Murree Thrust and has brought Neoproterozoic Muzaffarabad Formation dolomites south-westerly over Murree Formation rocks.

The Muzaffarabad fault was recognized along the overturned limb of the Balakot-Muzaffarabad anticline (Calkins et al., 1975; Ghazanfar et al., 1986). The Muzaffarabad Fault was also called as Himalayan Frontal Thrust (Baig and Lawrence, 1987), Tanda Fault (Nakata and Kumahara, 2006) and Balakot-Bagh Fault (Yeats et al., 2006). n the northern region of

Pakistan, active faults are scarcely found, although the major geological structures such as Main Boundary Fault (Thrust) and the Main Mantle Thrust are clearly recognizable. In the Hazara-Kashmir syntaxis around the sharp bend of the Jhelum river about 80km north of Islamabad, Nakata et al. (1991) mapped Muzaffarabad fault and Tanda fault as active faults. Muzaffarabad fault was initially regarded an N-S trending 8 km long fault from clear eastward facing reverse scarplets that cut Pleistocene river terraces of the Jhelum river in the south of Muzaffarabad town. Tanda fault was mapped as an NW-SE trending 16 km long active fault that dislocated Pleistocene alluvial fan surfaces up to the east on the east bank of the Jhelum river.

To the north of Muzaffarabad, Muzaffarabad fault extends NNW-SSE for about 20km on the east bank of Kunhar river.

Factors influencing Bearing Capacity

Bearing capacity of soil depends on many factors. The following are some important ones.

- 1. Type of soil
- 2. Unit weight of soil
- 3. Surcharge load
- 4. Depth of foundation
- 5. Mode of failure

2.2 Seismicity of Site Area

The project site is located in *Zone-4* as per Seismic Zoning Map of Pakistan (BCP-2007) and for *Zone-4*, the peak horizontal ground acceleration (PGA) is at least of the order of 0.32g.

Keeping in view the seismicity of the project site and the degree of importance of the proposed structures, it is recommended that the project structures should be designed against seismic loading as per project specifications.

2.3 Seismic Soil Profile Characterization

In accordance with the procedures described in Building Code of Pakistan (Seismic Provision 2007), the criteria for classification of un-cemented soil profiles are to be based on;

Age	Formation	Lithology				
Quaternary	Alluvium	Rounded, sub-rounded, boulders, cobbles, pebbles, gravels embedded loosely with matrix of sand, silt and clay.				
	unconfor	mity				
Early Miocene	Murree Formation	Sand stone, shale, siltstone, mudstone, cyclic deposition.				
	unconfor	mity				
Early Eocene	Kuldana Formation	Variegated shale, calcareous sandstone and limestone				
Early Eocene	Chorgalli Formation	Limestone and Shale.				
Early Eocene	Margalla Hill Limestone	Nodular limestone				
Late Paleocene	Patala Formation	Shale with intercalations of nodular limestone.				
Paleocene	Lockhart limestone	Nodular limestone				
Early Paleocene	Hangu Formation	Laterite, bauxite, ferruginous sandstone, fireclay, coal seems.				
	unconfor	mity				
Early Cambrian	Abbotabad Formation	Dolomite & Dolomitic limestone				
Pre-Cambrian	Hazara Formation	Slates, Phyllites				

• Vs=average shear wave velocity of top 30m soil profile

- N=average field SPT resistance for the top 30m soil profile
- Su=average undrained shear strength for the top 30m soil profile

The following table defines the various seismic soil profile based on the above-mentioned soil parameters

		Average Properties for Top 30 M (100 ft) of Soil Profile										
Soil Profile Type	Soil Profile Name/ Generic Description	Shear Wave Velocity, v _s m/sec (ft/sec)	Standard Penetration Tests, N [or N _{CH} for cohesionless soil layers] (blows/foot)	Undrained Shear Strength, s _u kPa (psf)								
S_A	Hard Rock	>1,500 (>4,920)										
S_B	Rock	750 to 1,500 (2,460 to 4,920)	-	-								
S_C	Very Dense Soil and Soft Rock	350 to 750 (1,150 to 2,460)	>50	>100 (>2,088)								
S_D	Stiff Soil Profile	175 to 350 (575 to 1,150)	15 to 50	50 to 100 (1,044 to 2,088)								
S_E^{-1}	Soft Soil Profile	<175 (<575)	<15	<50 (<1,044)								
S_F	Soil requiring Site-specific	Evaluation. See 4.4.2	,									

Based on the above mentioned parameters derived through field and laboratory investigations for project site area, the average soil profile in top 20 m depth as per Building Code of Pakistan (Seismic Provision 2007) is classified as S_D to S_C

3. FIELD AND LABORARORY INVESTIGATIONS

3.1 Field Investigations

The following activities were carried out in the field for accomplishing the geotechnical investigations at the site in accordance with the scope of work

- Execution of exploratory Points, 03 no. in total, 20 m deep

- Performance of SPTs in the Points at 1m interval
- Recovering disturbed and undisturbed soil sample from Points.

Specifically, following are the details of field investigations at the project site.

3.1.1 Execution of Exploratory Boreholes

All exploratory Points were Execution using Digital SPT methods.

3.1.2 Standard Penetration Test

Standard Penetration Tests (SPTs) were performed in the boreholes in accordance with ASTM D-1586 at 1~1.5~2 m intervals up to the final depth explored. A donut type hammer, weighing 64 kg was used for conducting the test. The SPT blows were recorded for penetration of 45.7 cm of split spoon samples and the number of blows required for the last 30.5 cm penetration was recorded as SPT-N values. The detailed description of the subsoils encountered and the depth at which SPTs were performed are plotted in the borehole logs presented in *APPENDIX-A*. As a part of the SPT, disturbed representative soil samples were recovered from split spoon sampler for classification tests.

3.1.3 Soil Sampling

Disturbed and undisturbed soil samples were obtained during the field work from the Points. Disturbed soil samples from the boreholes were obtained through split spoon sampler while performing SPTs in accordance with ASTM D-1586. These samples were placed in polythene bags. The polythene bags were clearly labeled to indicate the project name, borehole designation and depth of the sample.

Undisturbed soil samples were obtained from cohesive strata encountered in the holes through Shelby tube as per ASTM D-1587. The samples were properly waxed and clearly labeled to indicate the project name, borehole designation and the depth of the sample. All the soil samples were carefully transported to laboratory for soil testing.

3.2 Laboratory Testing

Selected representative subsoil samples were tested in Geo Deep Rock Geotech Engineering Services, for the determination of physical and engineering characteristics of the subsoils. The following tests were conducted in accordance with relevant ASTM method.

- Grain Size Analysis
- Direct Shear Tests
- Unconfined Compression test

The detailed Lab test results are presented under *APPENDIX-B*, *C* and *D*. Following is brief discussion on various laboratory test procedures:

- Grain Size Analysis

In most of the soil classification systems the percentage of material passing through US sieve #4 and #200 have been considered prominently to identify the soil with their variety of grain sizes. The grain size distribution curves give the exact idea regarding the gradation of the soils. In non-cohesive soils, it is very important to identify whether the soil is well graded, uniform graded or poorly graded.

For this, particle size is determined against 10%, 30%, and 60% passing, this may be denoted as D10,s D30 and D60 respectively.

Uniformity Co-efficient (Cu) =
$$D_{60}/D_{10}$$

Co-efficient of Curvature (Cc) =
$$D_{30}^2 / (D_{10} \times D_{60})$$

The above parameters are used to decide about granular soil whether they are poorly or well-graded type. Also D10 is used to determine permeability of soil through some well known correlations. The soil percentage passing through US sieve # 4 and retaining on US sieve # 200 indicate the percentage of Sand and passing through US sieve #200 show the percentage of Silt and Clay.

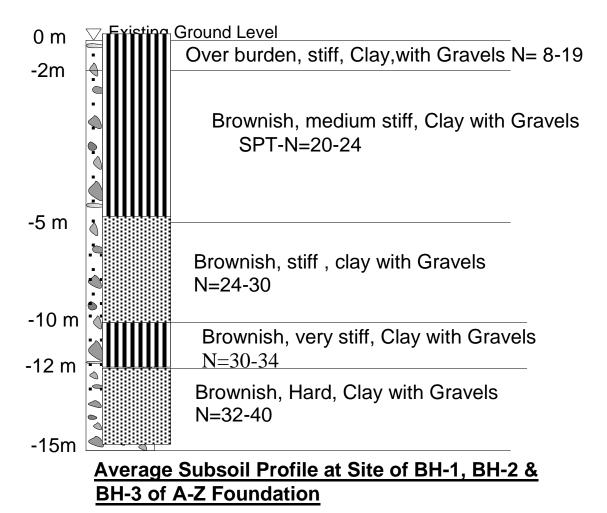
- Specific Gravity Test, G_s

Specific gravity of any substance is defined as the ratio of unit weight of that substance to the unit weight of water at 4° C. This definition simply means that how many times a substance (soil solids) is heavier than water. Geotechnical engineer is commonly interested in specific gravity which is defined as the ratio of unit weight of soil grains to the unit weight of water. It is denoted by G_s and expressed as:

$$G_s = \gamma_s/\gamma_w$$

- Direct Shear (DS) Test

The strength parameters c and ϕ are determined for cohesive and non-cohesive soils by direct shear test. This test is quick to evaluate the un-drained shear strength parameters. The sample is sheared along a predetermined shearing plane. The resistance to shear in non-cohesive and cohesive soils is derived from friction between grains and interlocking of grains. The behaviour is similar such as the top block is slide along the bottom block; a shear force to the surface of the bottom block, which is equal to the normal force acting between the blocks multiplied by a coefficient of friction. Normal stress is taken as (σ_n = Normal Load / Area of the Sheared Surface), while the shearing stress is τ_s = Shearing Force / Area of the Sheared Surface). The test was conducted in accordance with ASTM D-3080.


4. GEOTECHNICAL EVALUATIONS

4.1 General

The geotechnical investigations carried out at the proposed site comprised field and laboratory works. The studies were aimed at evaluating the engineering characteristics of the foundation soils. The subsurface conditions and the engineering characteristics of the subsoils at the proposed project site are discussed in the following section.

4.2 Stratigraphy

The subsoil conditions disclosed through three exploratory Points located in the project site area indicate that the stratigraphy, in general, consists of stiff to hard Silty Clay with Gravels followed by Hard Silty Clay with trace Gravels up to the investigated depth. The average stratigraphy at the project site is shown by the following figure.

4.3 Groundwater Table

Ground Water Table (GWT) was encountered in the boreholes at 14 m depth below the existing ground level during the period of these investigations.

4.4 Geotechnical Design Parameters

The basic subsoil profile and geotechnical design parameters of subsoils for foundation design are being summarized below: The parameters have been selected based on field and laboratory test data, consulting relevant literature and using general engineering judgment.

1. Geotechnical Design Parameters for the Project Site to be used in Foundation Design

n cooloniiioai zoolgii i alaiiiok	Original Soil Condition										
Soil Properties	Stratum-I	Stratum-II	Stratum-III	Stratum-III							
	(0-1 m)	(1-5 m)	(5 -10 m)	(10 - 15 m)							
	Clay,	Clay,	Clay,	Clay, trace							
Soil/ Rock Type	Gravel(Boulders)	Gravels	Gravels	Gravels							
Design SPT- N value	16	22	30	35							
Bulk unit weight (kN/m³)	20	22	22	22							
Undrained Cohesion, Cu (kPa)	1200	1000	1300	1000							
Angle of internal friction,											
φ, (deg)	20	30	20	30							
Elastic Modulus, Es (MPa)	40	75	50	75							
Poison ratio, μ	0.40	0.45	0.40	0.35							

5. RECOMMENDATIONS FOR FOUNDATIONS DESIGN

5.1 Foundation Design Criteria

When designing foundations for any structure, there are two criteria, which must be considered and satisfied separately:

- ➤ There must be an adequate factor of safety (FOS) against a shear failure or ground break, generally called bearing capacity failure. The factor of safety against shear failure is generally taken as 3.
- ➤ The settlement should remain within reasonable limits. In case of shallow spread foundations, the permissible settlement, in general, is 25 mm and for mat, generally the permissible settlement is 50 mm.
- A safety factor of 3 has been taken in to account against shear failure in shallow foundation design and the permissible settlement limits are taken as 25 mm for spread foundations and 50 mm for raft foundation.

Furthermore, the foundation system selected must be compatible, economical, and feasible for construction. Preferably, the foundation should be constructed using local resources and should be environment friendly.

5.3 Foundation Design Recommendations

In our opinion, the proposed building may be supported either on isolated footings connected with tie beams or on raft foundation. The foundations should be founded at 4 to 6 ft below the existing ground level. In the following section, the bearing capacity for isolated footings connected with tie beams and for raft foundation is given.

A. Bearing capacity for Isolated Footings connected with Tie Beams

In this case, the building should be designed as a frame structure consisting of columns and beams. The columns may be supported on isolated footings, however all footings should be connected with tie beams in a grid pattern. For isolated footings, bearing capacity w.r.t. shear failure criterion and for permissible settlement of 25 mm has been analyzed. Based on the analysis, an allowable bearing capacity **1.3 tsf** is recommended for the design of the footings.

B. Allowable Bearing Capacity for Raft Foundation

The frame structure can also be supported on a raft foundation to support the frame structure building. Based on the bearing capacity analysis w.r.t. shear failure and for a permissible

settlement of 2 inches, an allowable gross bearing capacity of 1.8 ton/ft² is recommended for the design of the raft slab.

Modulus of Subgrade Reaction for Raft Design

By using the following equation as suggested by J.E. Bowles, the vertical modulus of subgrade reaction, k_s has been estimated from the allowable bearing capacity recommended for the soil under the foundation:

$$k_s = 6$$
 (FOS) q_a for 2 inch settlement

The k_s value for the medium stiff to stiff silty clay/silty sand has been estimated as <u>80.0 kip/ft</u>³ for an allowable bearing capacity of 2.0 ton/ft².

In both the cases, we recommend the following procedure for the constructing the above mentioned foundations.

- Excavate the soil at the footprint of the foundation up to 2~3 ft so that the loose soil from top surface is removed.
- Compact the bottom of the excavated area to 95% of Modified Proctor (ASTM-1557) density using appropriate compaction equipment. The field density should be checked either by core cutter or sand cone method to check the above compaction requirement.
- Provide a pad of lean concrete (1:4:8) under the foundation at least 6 inches thick.
- Construct the foundation on the PCC layer.

6. CONSTRUCTIONAL ASPECTS AND LIMITATIONS

We recommend the following measures for the long-term stability of structures.

- Plinth protection slab sloping away from the building should be provided around the structure to reduce ingress of water to foundation soils.
- Proper surface drainage should be provided in the project area and the area should be graded to keep the surface runoff away from the structure.
- Experienced Engineer should observe the construction activities to check that the work is
 performed in accordance with the plans and specifications. Field density tests should be
 performed to check the compaction requirements as recommended above.
- The analyses and recommendations submitted in this report are based on the results gathered from three Points down to 15 m depth below existing surface level. The recommendations have been prepared on the basis of information of three Points; however, if during the course of construction/excavation the nature of the ground varies from the results of the investigation, the recommendations need to be reviewed.
- This report has been prepared for the construction of A-Z Foundation School.

 Paragraphs, statements, test results, boring logs, diagrams etc., should not be taken out of context and should not be utilized for any other structure at any site.

For Geodeep Rock Geotech Engineering Services

Report Prepared By:

Checked and Approved By:

(Engineer Abdullah)

Zeeshan

BS, Geological Engineering

Geotech Director

GDR, Isl, Pk

Appendix-A

BORE HOLE LOGS

GEOTECH ENGINEERING SERVICES GEODEEPROCK												
	Loc	tion:A	bbas	pur Ka	ashmi	Project:A-Z						
					Bor	e Hole	e No:	BH 01		Fig No. 01		
	<u>]</u>	BORE HOLE LOG	<u>S</u>		Teri	ninat	ion D	epth: 1	15 Me	Started Date 8-Dec-20		
										End Date 8-Dec-20		
							ater '	Table: 1	14m		Logged by: Abdullah(Geologist)	
Depth (m)	Geotechnical Description Classification Composition Composition Process of Composition Com			Sample Type	Moisture	15cm ad	netrat Value	noi	SPT N Blows	SPT 'N' PROFILE (S.B.)% (S.D.)% (S.D.)		
D				n 0 1			15	30	45		0 10 20 30 40 50	
1	Overbu	orden Brownish, Silty Clay, Soft with Gravels			D S		2	4	6	10		
2	Brow	vnish, medium Stiff Silty Clay with Gravels	CL GW		D S		3	3	7	10		
3		do		0 0 0 0°	D S		5	8	8	16		
4		do		0 0	D S		4	7	12	19		
5	Bre	ownish, Stiff Silty Clay with Gravels		000	D S		7	10	12	22		
6		do		Do	D S		9	12	14	26		
7		do	CL GM	0 0 0	D S		8	11	17	28		
8		do		000	D S		11	14	16	30		
9		do			D S		10	17	19	36		
10	Brov	wnish, Very Stiff to hard Silty Clay with Gravels		0 0 0	D S		13	20	17	37		
11		do	GW 60 CL 60 CC		0 0	D S		16	18	19	37	
12		I .			Boa	D S		14	20	25	45	
13		do		()	D S		12	19	21	40		
14		do			D S		17	22	20_	42		
15		do			D S		19	20	25	45		
	GWL 14m		C	PT=15						REMARKS		

					Loct	ion: A	hhaer	our Ka	chmi	Project:A-Z							
					Loction:Abbaspur Kashmir Bore Hole No: BH 02 Termination Depth: 15 Meter							Fig No. 01					
	1	<mark>BORE HOLE LOG</mark>	S									Started Date	-Dec-20				
	=		_									End Date	8-D	ec-20)		
					Grou	ınd W	ater T	able: 1	4m		Logged by: Abdullah(Geol	ogist)				
ı (m)	Geotechnical Description (ASTM D2487)		Classification Sumbol Legend		Sample Type	Moisture	pe	penetration Value		SPT N Blows			C:R)%	R:Q:D)%	Remarks		
Depth (m)			CI		Sa		15cm	30cm	45cm					K			
1	Overbu	rden Brownish, Silty Clay, Soft with Gravels	CL GW	00 0 00 0	D S		1	3	4	7	0 10	20 30 40 50					
2	Brow	nish, medium Stiff Silty Clay with Gravels		o a	D S		2	3	5	8					İ		
3		do	CL		D S		4	6	8	14							
4		do	GW	Óa,	D S		4	7	10	17]		
5		do		. 0 0 0 0 0 0	D S		3	9	11	20					i		
6	Bro	ownish, Stiff Silty Clay with Gravels	80	00	D S		6	10	15	25							
7		do			oo a	o a	D S		5	11	14	25					
8		do	CL GW	0 0 0 0 0 0 0	D S		8	12	17	29					!		
9		do		0 O A	D S		10	14	20	34					İ		
10		do) (0000	D S		12	18	22	40					 	
11	Brov	vnish, Very Stiff to hard Silty Clay with Gravels		n o a		D S		15	15	19	34						
12		do	Б	D S			14	17	21	38					 		
13		do	CL GW	w do'		00'	r 0 . M	D S D		13	20	23	43				
14	do			800	S	· - 	16	21	22	43					<u> </u>		
15		do		3000	D S		18	19	25	44					ļ		
GW	GWL 14m CPT=15									REMAR	KS						
	Checked by :																

OLUI LIIOMLLIMO SLIVIOLS																					
					Loct	ion:A	bbas	pur Ka	shmi	r	Project:A-Z										
					Bore	Hole	No:	BH 03			Fig No. 01										
]	BORE HOLE LOG	<u>S</u>		Termination Depth: 15 Meter							Started Date	Started Date 8-Dec-								
					1 (11	шиас	IOII D	срии. 1	.5 WIC	ıcı		End Date	8-]	Dec-20)						
					Grou	ınd W	ater T	Γable: 1	14m			Logged by: Abdul	lah(Geo	logist)							
Depth (m)	Geotechnical Description Sumpol Classification (ASTM D2487)			Sample Type Moisture Ascm Ascm Ascm Ascm Blows			SPT 'N' PROFILE			R:Q:D)%	Remarks										
D				000			15	30	45		0 10	20 30 40	50	+							
1	Overbu	orden Brownish, Silty Clay, Soft with Gravels		. o. U	D S		3	4	4	8		20 30 40									
2	Brov	vnish, medium Stiff Silty Clay with Gravels		o a	D S		5	5	7	12											
3		do	CL GW	000	D S		4	7	6	13											
4		do		000	D S		6	6	8	14											
5		do		00 0 00 0	D S		6	10	11	21											
6	Bro	ownish, Stiff Silty Clay with Gravels		OO"	D S		8	11	14	25											
7		do	CL GW		D S		10	10	15	35											
8		do		0 0 °0 0 0 0 0	D S		12	12	18	30											
9	Brov	vnish, Very Stiff to hard Silty Clay with Gravels								0 0	D S D		11	15	19	36					
10		do								İ	ı	0000	S		9	17	19	36			
11		do		0 0 4	S		13	16	20	36											
12	Bro	ownish, hard Silty Clay with Gravels		, 00 U	00° U	D S		15	21	23	44										
13		do	CL GW	0000	D S		12	17	25	42											
14		do		0 0 0	D S		16	_20_	24_	44					<u> </u>						
15	do			0.0	D S		17	19	26	45											
GWL 14m CPT=15			PT=15							REMAR	KS										
		Checked by :			_																

Appendix-B

SIEVE ANALYSIS

GEO DEEP ROCK GEOTECH ENGINEERING SERVIES Quality Control Section SIEVE ANALYSIS RESULT SHEET **ASTM D-422** School Building Sampling Date: 8/12/2020 For: Project Name: A-Z Foundation 10/12/2020 Testing Date: Location of Project: Abbaspur Kashmir B.H No: 1 Sample No: 2 Weight(gr): Sample taken by: **GDR** Depth (m): 3 Cumulative Sieve Size Mass Remark Mass Passing Limit % Retained(gr) Retained % Retained(gr) inches / No mm 1.5" 140 140 4.00 96.00 25 174 314 8.97 91.03 36.00 19 161 475 86.43 3/4" 13.57 9.5 3/8" 420 895 25.57 74.43 64.00 4.75 No 4 365 1260 36.00 394 47.26 52.74 40.57 No 10 1654 0.425 No 40 532 2186 62.46 37.54 0.075 No 200 494 2680 76.57 23.43 23.43 Wash No 200 Passing 820 **Group Name Gravel** % Sand % Passing No.200 Symbol Soil Classification 36.00 40.57 23.43 Silty Clay with **CL GW** Gravel **Particle Size Distribution** 100 D10= 90 D30= 80 D60= bassing Percent % 70 Cu= 60 Cc= 50 40 30 20 10 0 0.01 0.1 1 10 100 Particle Size-mm Tested by: Lab Manager Engr:Abdullah

GEO DEEP ROCK GEOTECH ENGINEERING SERVIES Quality Control Section SIEVE ANALYSIS RESULT SHEET **ASTM D-422** School Building Sampling Date: 8/12/2020 For: Project Name: A-Z Foundation 10/12/2020 Testing Date: Location of Project: Abbaspur Kashmir B.H No: Sample No: 3 Weight(gr): Sample taken by: **GDR** Depth (m): 6 Cumulative Sieve Size Mass Remark Mass Passing Limit % Retained(gr) Retained % Retained(gr) inches / No mm 1.5" 120 120 3.43 96.57 25 205 325 9.29 90.71 35.71 19 16.29 83.71 3/4" 245 570 9.5 3/8" 342 912 26.06 73.94 4.75 No 4 338 1250 35.71 64.29 397 47.06 52.94 44.86 No 10 1647 0.425 No 40 567 2214 63.26 36.74 19.43 0.075 No 200 606 2820 80.57 19.43 Wash No 200 Passing 680 **Group Name Gravel %** Sand % Passing No.200 Symbol Soil Classification 44.86 35.71 19.43 Silty Clay with **CL GW** Gravel **Particle Size Distribution** 100 D10= 90 D30= 80 D60= Passing Percent % 70 Cu= 60 Cc= 50 40 30 20 10 0.01 0.1 10 100 Particle Size-mm Tested by: Lab Manager Engr:Abdullah

GEO DEEP ROCK GEOTECH ENGINEERING SERVIES Quality Control Section SIEVE ANALYSIS RESULT SHEET **ASTM D-422** School Building Sampling Date: 8/12/2020 For: Project Name: A-Z Foundation 10/12/2020 Testing Date: Location of Project: Abbaspur Kashmir B.H No: 1 Sample No: 4 Weight(gr): Sample taken by: **GDR** Depth (m): 9 Cumulative Sieve Size Mass Remark Mass Passing Limit % Retained(gr) Retained % Retained(gr) inches / No mm 1.5" 95 95 2.71 97.29 25 217 312 8.91 91.09 36.83 19 208 14.86 85.14 3/4" 520 9.5 3/8" 405 925 26.43 73.57 4.75 No 4 364 1289 36.83 63.17 363 47.20 40.14 No 10 1652 52.80 0.425 No 40 523 2175 62.14 37.86 23.03 0.075 No 200 **519** 2694 76.97 23.03 Wash No 200 Passing 806 **Group Name Gravel** % Sand % Passing No.200 Symbol Soil Classification 36.83 40.14 23.03 Silty Clay with **CL GW** Gravel **Particle Size Distribution** 100 D10= 90 D30= 80 D60= bassing Percent % 70 Cu= 60 Cc= 50 40 30 20 10 0 0.01 0.1 1 10 100 Particle Size-mm Tested by: Lab Manager Engr:Abdullah

GEO DEEP ROCK GEOTECH ENGINEERING SERVIES Quality Control Section SIEVE ANALYSIS RESULT SHEET **ASTM D-422** School Building Sampling Date: 8/12/2020 For: Project Name: A-Z Foundation 10/12/2020 Testing Date: Location of Project: Abbaspur Kashmir B.H No: Sample No: 5 Weight(gr): 4000 Sample taken by: **GDR** Depth (m): 12 Cumulative Sieve Size Mass Remark Mass Passing Limit % Retained(gr) Retained % Retained(gr) inches / No mm 1.5" 52 52 1.30 98.70 25 185 237 5.93 94.08 33.58 19 223 460 88.50 3/4" 11.50 9.5 3/8" 432 892 22.30 77.70 66.43 4.75 No 4 451 1343 33.58 392 36.20 No 10 1735 43.38 56.63 0.425 No 40 543 2278 56.95 43.05 30.23 0.075 No 200 513 2791 69.78 30.23 Wash No 200 Passing 1209 **Group Name Gravel** % Sand % Passing No.200 Symbol Soil Classification 33.58 36.20 30.23 Silty Clay with **CL GW** Gravel **Particle Size Distribution** 100 D10= 90 D30= 80 D60= Passing Percent % 70 Cu= 60 Cc= 50 40 30 20 10 0.01 0.1 10 100 Particle Size-mm Tested by: Lab Manager Engr:Abdullah

GEO DEEP ROCK GEOTECH ENGINEERING SERVIES Quality Control Section SIEVE ANALYSIS RESULT SHEET **ASTM D-422** School Building Sampling Date: 8/12/2020 For: Project Name: A-Z Foundation 10/12/2020 Testing Date: Location of Project: Abbaspur Kashmir B.H No: Sample No: 6 Weight(gr): 4000 Sample taken by: **GDR** Depth (m): 15 Cumulative Sieve Size Mass Remark Mass Passing Limit % Retained(gr) Retained % Retained(gr) inches / No mm 1.5" 45 45 1.13 98.88 25 183 228 5.70 94.30 33.10 19 214 11.05 88.95 3/4" 442 9.5 3/8" 433 875 21.88 78.13 4.75 No 4 449 1324 33.10 66.90 400 1724 36.10 No 10 43.10 56.90 43.45 0.425 No 40 538 2262 56.55 30.80 0.075 No 200 506 2768 69.20 30.80 Wash No 200 Passing 1232 **Group Name Gravel** % Sand % Passing No.200 Symbol Soil Classification 36.10 33.10 30.80 Silty Clay with **CL GW** Gravel **Particle Size Distribution** 100 D10= 90 D30= 80 D60= Passing Percent % 70 Cu= 60 Cc= 50 40 30 20 10 0.01 0.1 10 100 Particle Size-mm Tested by: Lab Manager Engr:Abdullah

GEO DEEP ROCK GEOTECH ENGINEERING SERVIES Quality Control Section SIEVE ANALYSIS RESULT SHEET **ASTM D-422** School Building Sampling Date: 8/12/2020 For: Project Name: A-Z Foundation 10/12/2020 Testing Date: Location of Project: Abbaspur Kashmir 2 B.H No: Sample No: Weight(gr): Sample taken by: **GDR** Depth (m): 3 Cumulative Sieve Size Mass Remark Mass Passing Limit % Retained(gr) Retained % Retained(gr) inches / No mm 1.5" 67 67 1.91 98.09 25 180 247 7.06 92.94 33.11 19 211 458 13.09 86.91 3/4" 9.5 3/8" 414 872 24.91 75.09 4.75 No 4 287 1159 33.11 66.89 44.97 45.97 No 10 415 1574 55.03 0.425 No 40 676 2250 64.29 35.71 20.91 0.075 No 200 518 2768 79.09 20.91 Wash No 200 Passing 732 **Group Name Gravel %** Sand % Passing No.200 Symbol Soil Classification 45.97 33.11 20.91 Silty Clay with CL GM Gravel **Particle Size Distribution** 100 D10= 90 D30= 80 D60= bassing Percent % 70 Cu= 60 Cc= 50 40 30 20 10 0 0.01 0.1 1 10 100 Particle Size-mm Tested by: Lab Manager Engr:Abdullah

GEO DEEP ROCK GEOTECH ENGINEERING SERVIES Quality Control Section SIEVE ANALYSIS RESULT SHEET **ASTM D-422** School Building Sampling Date: 8/12/2020 For: Project Name: A-Z Foundation 10/12/2020 Testing Date: Location of Project: Abbaspur Kashmir 2 B.H No: Sample No: 2 Weight(gr): Sample taken by: **GDR** Depth (m): 6 Cumulative Sieve Size Mass Remark Mass Passing Limit % Retained(gr) Retained % Retained(gr) inches / No mm 1.5" 126 126 3.60 96.40 25 201 327 9.34 90.66 35.71 19 482 86.23 3/4" 155 13.77 9.5 3/8" 434 916 26.17 73.83 4.75 No 4 334 1250 35.71 64.29 428 47.94 52.06 40.86 No 10 1678 0.425 No 40 594 2272 64.91 35.09 0.075 No 200 408 2680 76.57 23.43 23.43 Wash No 200 Passing 820 **Group Name Gravel %** Sand % Passing No.200 Symbol Soil Classification 40.86 35.71 23.43 Silty Clay with CL GM Gravel **Particle Size Distribution** 100 D10= 90 D30= 80 D60= bassing Percent % 70 Cu= 60 Cc= 50 40 30 20 10 0 0.01 0.1 1 10 100 Particle Size-mm Tested by: Lab Manager Engr:Abdullah

GEO DEEP ROCK GEOTECH ENGINEERING SERVIES Quality Control Section SIEVE ANALYSIS RESULT SHEET **ASTM D-422** School Building Sampling Date: 8/12/2020 For: Project Name: A-Z Foundation 10/12/2020 Testing Date: Location of Project: Abbaspur Kashmir 2 B.H No: Sample No: 3 Weight(gr): Sample taken by: **GDR** Depth (m): 9 Cumulative Sieve Size Mass Remark Mass Passing Limit % Retained(gr) Retained % Retained(gr) inches / No mm 1.5" 141 141 9.40 90.60 25 109 250 16.67 83.33 50.33 19 3/4" 85 335 22.33 77.67 9.5 3/8" 245 580 38.67 61.33 49.67 4.75 No 4 175 755 50.33 40.67 33.00 No 10 135 890 59.33 0.425 No 40 150 1040 69.33 30.67 16.67 0.075 No 200 210 1250 83.33 16.67 Wash No 200 Passing 250 **Group Name Gravel %** Sand % Passing No.200 Symbol Soil Classification 50.33 33.00 16.67 Silty Clay with CL GM Gravel **Particle Size Distribution** 100 D10= 90 D30= 80 D60= Passing Percent % 70 Cu= 60 Cc= 50 40 30 20 10 0.01 0.1 10 100 Particle Size-mm Tested by: Lab Manager Engr:Abdullah

GEO DEEP ROCK GEOTECH ENGINEERING SERVIES Quality Control Section SIEVE ANALYSIS RESULT SHEET **ASTM D-422** School Building Sampling Date: 8/12/2020 For: Project Name: A-Z Foundation 10/12/2020 Testing Date: Location of Project: Abbaspur Kashmir 2 B.H No: Sample No: 4 Weight(gr): Sample taken by: **GDR** Depth (m): 12 Cumulative Sieve Size Mass Remark Mass Passing Limit % Retained(gr) Retained % Retained(gr) inches / No mm 1.5" 75 75 2.14 97.86 25 281 356 10.17 89.83 35.86 19 184 540 15.43 84.57 3/4" 9.5 3/8" 380 920 26.29 73.71 4.75 No 4 335 1255 35.86 64.14 281 56.11 42.00 No 10 1536 43.89 0.425 No 40 510 2046 58.46 41.54 22.14 0.075 No 200 679 2725 77.86 22.14 Wash No 200 Passing 775 **Group Name Gravel** % Sand % Passing No.200 Symbol Soil Classification 35.86 42.00 22.14 Silty Clay with CL GM Gravel **Particle Size Distribution** 100 D10= 90 D30= 80 D60= bassing Percent % 70 Cu= 60 Cc= 50 40 30 20 10 0 0.01 0.1 1 10 100 Particle Size-mm Tested by: Lab Manager Engr:Abdullah

GEO DEEP ROCK GEOTECH ENGINEERING SERVIES Quality Control Section SIEVE ANALYSIS RESULT SHEET **ASTM D-422** School Building Sampling Date: 8/12/2020 For: Project Name: A-Z Foundation 10/12/2020 Testing Date: Location of Project: Abbaspur Kashmir 2 B.H No: Sample No: 5 Weight(gr): 4500 Sample taken by: **GDR** Depth (m): 15 Cumulative Sieve Size Mass Remark Mass Passing Limit % Retained(gr) Retained % Retained(gr) inches / No mm 1.5" 75 75 1.67 98.33 25 281 356 7.91 92.09 27.89 19 184 12.00 88.00 3/4" 540 9.5 3/8" 380 920 20.44 79.56 4.75 No 4 335 1255 27.89 72.11 281 32.67 No 10 1536 34.13 65.87 0.425 No 40 510 2046 45.47 54.53 39.44 0.075 No 200 679 2725 60.56 39.44 Wash No 200 Passing 1775 **Group Name Gravel** % Sand % Passing No.200 Symbol Soil Classification 27.89 32.67 39.44 Silty Clay with CL GM Gravel **Particle Size Distribution** 100 D10= 90 D30= 80 D60= Passing Percent % 70 Cu= 60 Cc= 50 40 30 20 10 0 0.01 0.1 10 100 Particle Size-mm Tested by: Lab Manager Engr:Abdullah

GEO DEEP ROCK GEOTECH ENGINEERING SERVIES Quality Control Section SIEVE ANALYSIS RESULT SHEET **ASTM D-422** School Building Sampling Date: 8/12/2020 For: Project Name: A-Z Foundation 10/12/2020 Testing Date: Location of Project: Abbaspur Kashmir 3 B.H No: Sample No: 1 Weight(gr): Sample taken by: **GDR** Depth (m): 3 Cumulative Sieve Size Mass Remark Mass Passing Limit % Retained(gr) Retained % Retained(gr) inches / No mm 1.5" 95 95 2.71 97.29 25 **1**50 245 7.00 93.00 22.43 19 127 10.63 89.37 3/4" 372 9.5 3/8" 210 582 16.63 83.37 22.43 4.75 No 4 203 785 77.57 956 72.69 14.54 No 10 171 27.31 0.425 No 40 189 1145 32.71 67.29 63.03 0.075 No 200 149 1294 36.97 63.03 Wash No 200 Passing 2206 **Group Name Gravel** % Sand % Passing No.200 Symbol Soil Classification 22.43 14.54 63.03 Silty Clay with CL GM Gravel **Particle Size Distribution** 100 D10= 90 D30= 80 D60= bassing Percent % 70 Cu= 60 Cc= 50 40 30 20 10 0 0.01 0.1 1 10 100 Particle Size-mm Tested by: Lab Manager Engr:Abdullah

GEO DEEP ROCK GEOTECH ENGINEERING SERVIES Quality Control Section SIEVE ANALYSIS RESULT SHEET **ASTM D-422** School Building Sampling Date: 8/12/2020 For: Project Name: A-Z Foundation 10/12/2020 Testing Date: Location of Project: Abbaspur Kashmir B.H No: Sample No: 2 Weight(gr): Sample taken by: **GDR** Depth (m): 6 Cumulative Sieve Size Mass Remark Mass Passing Limit % Retained(gr) Retained % Retained(gr) inches / No mm 1.5" 65 65 2.17 97.83 25 159 224 7.47 92.53 24.53 19 132 356 11.87 88.13 3/4" 9.5 3/8" 186 542 18.07 81.93 75.47 4.75 No 4 194 736 24.53 924 188 17.57 No 10 30.80 69.20 0.425 No 40 173 1097 36.57 63.43 57.90 0.075 No 200 166 1263 42.10 57.90 Wash No 200 Passing 1737 **Group Name Gravel %** Sand % Passing No.200 Symbol Soil Classification 24.53 17.57 57.90 Silty Clay with CL GM Gravel **Particle Size Distribution** 100 D10= 90 D30= 80 D60= bassing Percent % 70 Cu= 60 Cc= 50 40 30 20 10 0 0.01 0.1 1 10 100 Particle Size-mm Tested by: Lab Manager Engr:Abdullah

GEO DEEP ROCK GEOTECH ENGINEERING SERVIES Quality Control Section SIEVE ANALYSIS RESULT SHEET **ASTM D-422** School Building Sampling Date: 8/12/2020 For: Project Name: A-Z Foundation 10/12/2020 Testing Date: Location of Project: Abbaspur Kashmir B.H No: Sample No: 3 Weight(gr): Sample taken by: **GDR** Depth (m): 9 Cumulative Sieve Size Mass Remark Mass Passing Limit % Retained(gr) Retained % Retained(gr) inches / No mm 1.5" 82 82 3.28 96.72 25 164 246 9.84 90.16 30.72 19 138 84.64 3/4" 384 15.36 9.5 3/8" 199 583 23.32 76.68 4.75 No 4 185 768 30.72 69.28 21.20 No 10 183 951 38.04 61.96 0.425 No 40 185 1136 45.44 54.56 48.08 0.075 No 200 162 1298 51.92 48.08 Wash No 200 Passing 1202 **Group Name Gravel** % Sand % Passing No.200 Symbol Soil Classification 30.72 21.20 48.08 Silty Clay with CL GM Gravel **Particle Size Distribution** 100 D10= 90 D30= 80 D60= Passing Percent % 70 Cu= 60 Cc= 50 40 30 20 10 0 0.01 0.1 10 100 Particle Size-mm Tested by: Lab Manager Engr:Abdullah

GEO DEEP ROCK GEOTECH ENGINEERING SERVIES Quality Control Section SIEVE ANALYSIS RESULT SHEET **ASTM D-422** School Building Sampling Date: 8/12/2020 For: Project Name: A-Z Foundation 10/12/2020 Testing Date: Location of Project: Abbaspur Kashmir 3 B.H No: Sample No: 4 Weight(gr): Sample taken by: **GDR** Depth (m): 12 Cumulative Sieve Size Mass Remark Mass Passing Limit % Retained(gr) Retained % Retained(gr) inches / No mm 1.5" 77 77 3.08 96.92 25 157 234 9.36 90.64 30.08 19 132 366 14.64 85.36 3/4" 9.5 3/8" 210 576 23.04 76.96 4.75 No 4 176 752 30.08 69.92 182 934 21.16 No 10 37.36 62.64 0.425 No 40 179 1113 44.52 55.48 48.76 0.075 No 200 168 1281 51.24 48.76 Wash No 200 Passing 1219 **Group Name Gravel** % Sand % Passing No.200 Symbol Soil Classification 30.08 21.16 48.76 Silty Clay with CL GM Gravel **Particle Size Distribution** 100 D10= 90 D30= 80 D60= bassing Percent % 70 Cu= 60 Cc= 50 40 30 20 10 0 0.01 0.1 1 10 100 Particle Size-mm Tested by: Lab Manager Engr:Abdullah

GEO DEEP ROCK GEOTECH ENGINEERING SERVIES Quality Control Section SIEVE ANALYSIS RESULT SHEET **ASTM D-422** School Building Sampling Date: 8/12/2020 For: Project Name: A-Z Foundation 10/12/2020 Testing Date: Location of Project: Abbaspur Kashmir B.H No: Sample No: 5 Weight(gr): Sample taken by: **GDR** Depth (m): 15 Cumulative Sieve Size Mass Remark Mass Passing Limit % Retained(gr) Retained % Retained(gr) inches / No mm 1.5" 52 52 2.60 97.40 25 164 216 10.80 89.20 36.95 19 143 17.95 82.05 3/4" 359 9.5 3/8" 193 552 27.60 72.40 4.75 No 4 187 739 36.95 63.05 45.75 28.30 No 10 176 915 54.25 0.425 No 40 239 1154 57.70 42.30 34.75 0.075 No 200 151 1305 65.25 34.75 Wash No 200 Passing 695 **Group Name Gravel %** Sand % Passing No.200 Symbol Soil Classification 36.95 28.30 34.75 Silty Clay with CL GM Gravel **Particle Size Distribution** 100 D10= 90 D30= 80 D60= Passing Percent % 70 Cu= 60 Cc= 50 40 30 20 10 0.01 0.1 10 100 Particle Size-mm Tested by: Lab Manager

Engr:Abdullah

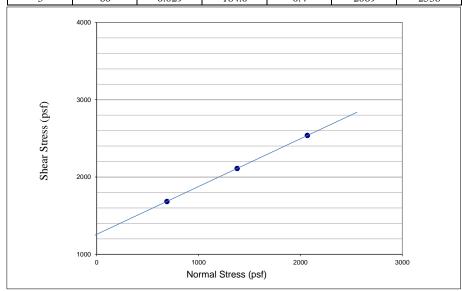
Appendix-C

DIRECT SHEAR TEST

Project Name:	A-Zampling Date: 8/12/20)20
Location:	Abbaspur Kashmir	Testing Date: 10/12/2020
Building Project	BH No : 1	Sample Depth: 5 m

Bulk Density (pcf)

Insitu Moisture Content (%)


Direct Shear Test

Sample Type

Remoulded (Gravel, Boulder Free)

Under Saturation Condition

Sample No.	Applied Load (lb)	Sample Area (Sq. ft)	Dial Reading	Ring Factor (lbs/div)	Normal stress (psf)	Shear stress (psf)
1	20	0.029	122.0	0.4	690	1683
2	40	0.029	153.0	0.4	1379	2110
3	60	0.029	184.0	0.4	2069	2538

Angle of Friction = 35.5 Degree

0.62 Radian

Undrained Cohesion (Psf) = 1280

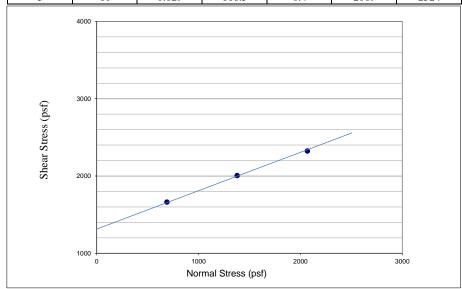
GEO DEEP ROCK GEOTECH ENGINEERING SERVIES Project Name: A-Zampling Date: 8/12/2020

Location: Abbaspur Kashmir Testing Date: 10/12/2020

Building Project BH No : 1 Sample Depth: 10 m

Bulk Density (pcf)

Insitu Moisture Content (%)


Direct Shear Test

Sample Type

Remoulded (Gravel, Boulder Free)

Under Saturation Condition

Sample No.	Applied Load (lb)	Sample Area (Sq. ft)	Dial Reading	Ring Factor (lbs/div)	Normal stress (psf)	Shear stress (psf)
1	20	0.029	120.5	0.4	690	1662
2	40	0.029	145.5	0.4	1379	2007
3	60	0.029	168.5	0.4	2069	2324

Angle of Friction = 27.5 Degree

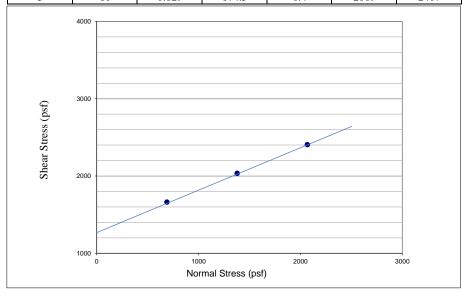
0.48 Radian

Undrained Cohesion (Psf) = 1340

Proj	ject Name:	A-Zampling Date: 8/12/2020	
Loca	ation:	Abbaspur Kashmir	Testing Date: 10/12/2020
Buil	lding Project	BH No:1	Sample Depth: 15 m

Bulk Density (pcf)

Insitu Moisture Content (%)


Direct Shear Test

Sample Type

Remoulded (Gravel, Boulder Free)

Under Saturation Condition

Sample No.	Applied Load (lb)	Sample Area (Sq. ft)	Dial Reading	Ring Factor (lbs/div)	Normal stress (psf)	Shear stress (psf)
1	20	0.029	120.5	0.4	690	1662
2	40	0.029	147.5	0.4	1379	2034
3	60	0.029	174.5	0.4	2069	2407

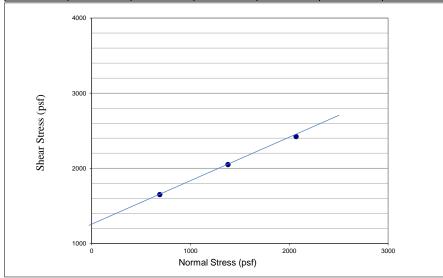
Angle of Friction = 30.9 Degree

0.54 Radian

Undrained Cohesion (Psf) = 1280

GEO DEEP ROCK GEOTECH ENGINEERING SERVIES A-Z Sampling Date: 8/12/2020 Project Name: **Direct Shear Test** Location: Abbaspur Kashmir Testing Date: 10/12/2020 BH No: 2 **Building Project** Sample Depth: 5 m

Bulk Density (pcf)


Insitu Moisture Content (%)

Sample Type

Remoulded (Gravel, Boulder Free)

Under Saturation Condition

Sample No.	Applied Load (lb)	Sample Area (Sq. ft)	Dial Reading	Ring Factor (lbs/div)	Normal stress (psf)	Shear stress (psf)
1	20	0.029	119.5	0.4	690	1648
2	40	0.029	148.5	0.4	1379	2048
3	60	0.029	175.5	0.4	2069	2421

Angle of Friction 32.1 Degree Radian

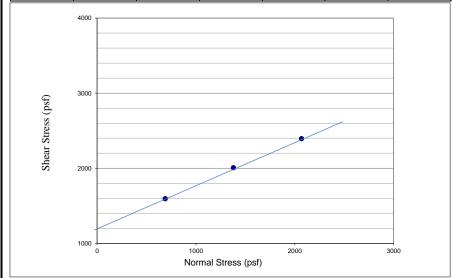
0.56

Undrained Cohesion (Psf) 1230

	Project Name:	A-Z Sampling Date: 8/12/202	0
Direct Shear Test	Location:	Abbaspur Kashmir	Testing Date: 10/12/2020
	Building Project	BH No : 2	Sample Depth: 10 m

Bulk Density (pcf)

Insitu Moisture Content (%)


Sample Type

-

Remoulded (Gravel, Boulder Free)

Under Saturation Condition

Sample No.	Applied Load (lb)	Sample Area (Sq. ft)	Dial Reading	Ring Factor (lbs/div)	Normal stress (psf)	Shear stress (psf)
1	20	0.029	115.5	0.4	690	1593
2	40	0.029	145.5	0.4	1379	2007
3	60	0.029	173.5	0.4	2069	2393

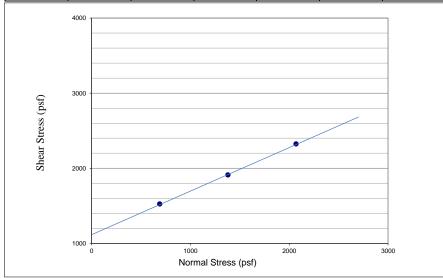
Angle of Friction = 33.2 Degree

0.58 Radian

Undrained Cohesion (Psf) = 1200

Direct Shear Test Project Name: A-Z Sampling Date: 8/12/2020 Location: Abbaspur Kashmir Testing Date: 10/12/2020 Building Project BH No: 2 Sample Depth: 15 m

Bulk Density (pcf)


Insitu Moisture Content (%)

Sample Type

Remoulded (Gravel, Boulder Free)

Under Saturation Condition

Sample No.	Applied Load (lb)	Sample Area (Sq. ft)	Dial Reading	Ring Factor (lbs/div)	Normal stress (psf)	Shear stress (psf)
1	20	0.029	110.5	0.4	690	1524
2	40	0.029	138.5	0.4	1379	1910
3	60	0.029	168.5	0.4	2069	2324

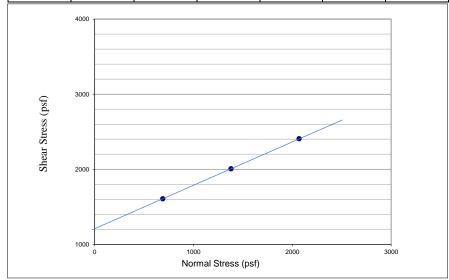
Angle of Friction = 33.2 Degree

0.58 Radian

Undrained Cohesion (Psf) = 1100

Direct Shear Test Project Name: A-Z Sampling Date: 8/12/2020 Location: Abbaspur Kashmir Testing Date: 10/12/2020 Building Project BH No: 3 Sample Depth: 5 m

Bulk Density (pcf)


Insitu Moisture Content (%)

Sample Type

Remoulded (Gravel, Boulder Free)

Under Saturation Condition

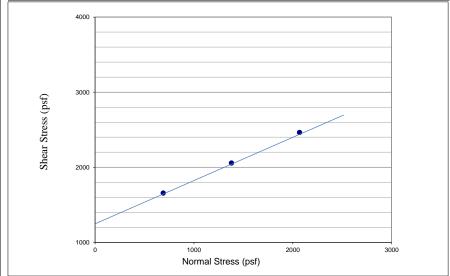
Sample No.	Applied Load (lb)	Sample Area (Sq. ft)	Dial Reading	Ring Factor (lbs/div)	Normal stress (psf)	Shear stress (psf)
1	20	0.029	116.5	0.4	690	1607
2	40	0.029	145.5	0.4	1379	2007
3	60	0.029	174.5	0.4	2069	2407

Angle of Friction = 33.2 Degree

0.58 Radian

Undrained Cohesion (Psf) = 1200

Direct Shear Test Project Name: A-Z Sampling Date: 8/12/2020 Location: Abbaspur Kashmir Testing Date: 10/12/2020 Building Project BH No: 3 Sample Depth: 10 m


Bulk Density (pcf)

Insitu Moisture Content (%)

Sample Type Remoulded (Gravel, Boulder Free)

Under Saturation Condition

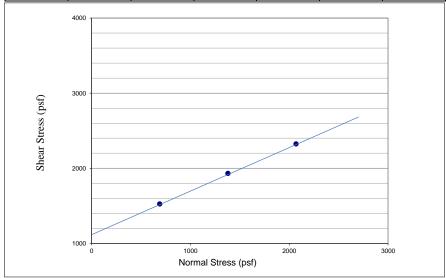
Sample No.	Applied Load (lb)	Sample Area (Sq. ft)	Dial Reading	Ring Factor (lbs/div)	Normal stress (psf)	Shear stress (psf)
1	20	0.029	120.0	0.4	690	1655
2	40	0.029	149.0	0.4	1379	2055
3	60	0.029	178.5	0.4	2069	2462

Angle of Friction = 33.5 Degree 0.585 Radian

Undrained Cohesion (Psf) = 1230

Direct Shear Test Project Name: A-Z Sampling Date: 8/12/2020 Location: Abbaspur Kashmir Testing Date: 10/12/2020 Building Project BH No: 3 Sample Depth: 15 m

Bulk Density (pcf)


Insitu Moisture Content (%)

Sample Type

Remoulded (Gravel, Boulder Free)

Under Saturation Condition

Sample No.	Applied Load (lb)	Sample Area (Sq. ft)	Dial Reading	Ring Factor (lbs/div)	Normal stress (psf)	Shear stress (psf)
1	20	0.029	110.5	0.4	690	1524
2	40	0.029	140.0	0.4	1379	1931
3	60	0.029	168.5	0.4	2069	2324

Angle of Friction = 33.2 Degree

0.58 Radian

Undrained Cohesion (Psf) = 1120

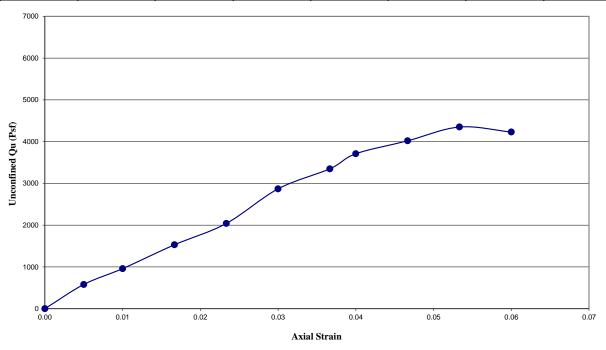
Appendix-D

UNCONFINED COMPRESSION TEST

UNCONFINED COMPRESSION TEST

Project Name: A-Z Sampling Date: 8/12/2020

Location: Abbaspur Kashmir Testing Date: 10/12/2020


BH No: 1 Sample Depth: 6 m

Proving Ring Constant: 1.3 lbs/div

Original Area of Sample: 0.01227 ft²

Rate of Strain: 10.0% / min

Strain dial reading	Dial reading	Load. P (lbs)	Vertical dial difference D L (inch)	Unit strain Î	1-Î	Corrected area (ft 2)	Unit stress (lb / sq. ft)
0	0	0	0	0	1	0	0
15	5.5	7	0.015	0.005	0.995	0.0124	580
30	9.2	12	0.030	0.010	0.990	0.0124	960
50	14.7	19	0.050	0.017	0.983	0.0125	1530
70	19.8	26	0.070	0.023	0.977	0.0126	2040
90	28.0	36	0.090	0.030	0.970	0.0127	2870
110	32.9	43	0.110	0.037	0.963	0.0128	3350
120	36.6	48	0.120	0.040	0.960	0.0128	3710
140	25.0	52	0.140	0.047	0.953	0.0129	4020
160	43.5	57	0.160	0.053	0.947	0.0130	4350
180	42.6	55	0.180	0.060	0.940	0.0131	4230

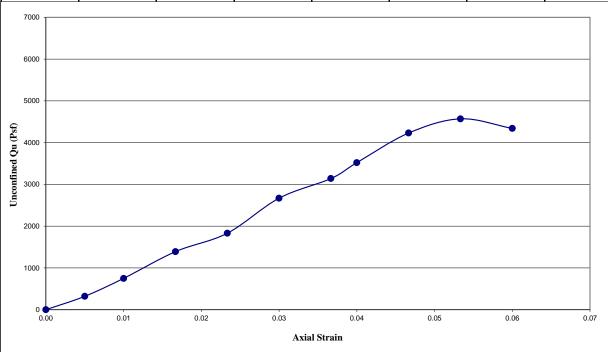
Unconfined Compressive Strength (TSF) = 1.942 Axial Strain = 0.5

<u>LAB TECHNICIAN</u> <u>MATERIAL ENGINEER</u>

UNCONFINED COMPRESSION TEST

Project Name: A-Z Sampling Date: 8/12/2020

Location: Abbaspur Kashmir Testing Date: 10/12/2020


BH No: 1 Sample Depth: 15 m

Proving Ring Constant: 1.3 lbs/div

Original Area of Sample: 0.01227 ft²

Rate of Strain: 10.0% / min

Strain dial reading	Dial reading	Load. P (lbs)	Vertical dial difference D L (inch)	Unit strain Î	1-Î	Corrected area (ft 2)	Unit stress (lb / sq. ft)
0	0	0	0	0	1	0	0
15	3.0	4	0.015	0.005	0.995	0.0124	320
30	7.2	9	0.030	0.010	0.990	0.0124	750
50	13.4	17	0.050	0.017	0.983	0.0125	1390
70	17.7	23	0.070	0.023	0.977	0.0126	1830
90	26.0	34	0.090	0.030	0.970	0.0127	2670
110	30.8	40	0.110	0.037	0.963	0.0128	3140
120	34.7	45	0.120	0.040	0.960	0.0128	3520
140	25.0	55	0.140	0.047	0.953	0.0129	4230
160	45.7	59	0.160	0.053	0.947	0.0130	4570
180	43.7	57	0.180	0.060	0.940	0.0131	4340

Unconfined Compressive Strength (TSF) = 2.040 Axial Strain = 0.53

LAB TECHNICIAN

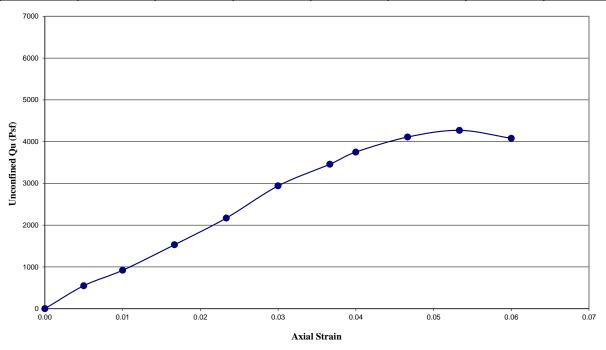
UNCONFINED COMPRESSION TEST

Project Name: A-Z Sampling Date: 8/12/2020

Location: Abbaspur Kashmir

Testing Date: 10/12/2020

BH No: 1


Sample Depth: 3 m

Proving Ring Constant: 1.3 lbs/div

Original Area of Sample: 0.01227 ft²

Rate of Strain: 10.0% / min

Strain dial reading	Dial reading	Load. P (lbs)	Vertical dial difference D L (inch)	Unit strain Î	1-Î	Corrected area (ft 2)	Unit stress (lb / sq. ft)
0	0	0	0	0	1	0	0
15	5.2	7	0.015	0.005	0.995	0.0124	550
30	8.8	11	0.030	0.010	0.990	0.0124	920
50	14.7	19	0.050	0.017	0.983	0.0125	1530
70	21.0	27	0.070	0.023	0.977	0.0126	2170
90	28.7	37	0.090	0.030	0.970	0.0127	2940
110	34.0	44	0.110	0.037	0.963	0.0128	3460
120	37.0	48	0.120	0.040	0.960	0.0128	3750
140	40.8	53	0.140	0.047	0.953	0.0129	4110
160	42.7	55	0.160	0.053	0.947	0.0130	4270
180	41.1	53	0.180	0.060	0.940	0.0131	4080

Unconfined Compressive Strength (TSF) 1.906 **Axial Strain** 0.5

LAB TECHNICIAN

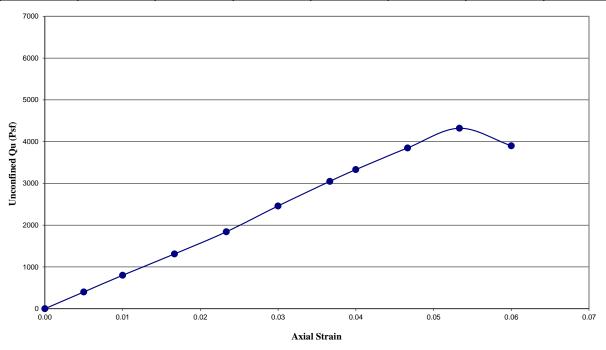
UNCONFINED COMPRESSION TEST

Project Name: A-Z Sampling Date: 8/12/2020

Location: Abbaspur Kashmir

Testing Date: 10/12/2020

BH No: 2


Sample Depth: 10 m

Proving Ring Constant: 1.3 lbs/div

Original Area of Sample: 0.01227 ft²

Rate of Strain: 10.0% / min

Strain dial reading	Dial reading	Load. P (lbs)	Vertical dial difference D L (inch)	Unit strain Î	1-Î	Corrected area (ft 2)	Unit stress (lb / sq. ft)
0	0	0	0	0	1	0	0
15	3.8	5	0.015	0.005	0.995	0.0124	400
30	7.6	10	0.030	0.010	0.990	0.0124	800
50	12.6	16	0.050	0.017	0.983	0.0125	1310
70	17.8	23	0.070	0.023	0.977	0.0126	1840
90	24.0	31	0.090	0.030	0.970	0.0127	2460
110	30.0	39	0.110	0.037	0.963	0.0128	3050
120	32.8	43	0.120	0.040	0.960	0.0128	3330
140	38.2	50	0.140	0.047	0.953	0.0129	3850
160	43.2	56	0.160	0.053	0.947	0.0130	4320
180	39.3	51	0.180	0.060	0.940	0.0131	3900

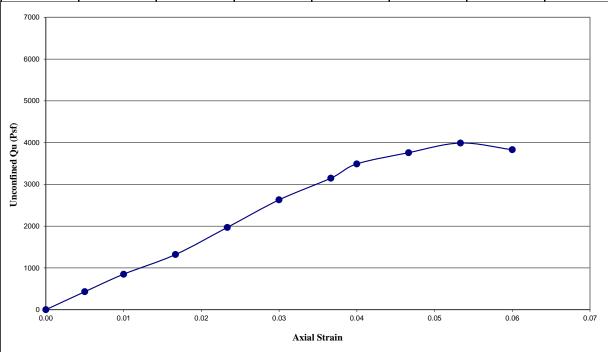
Unconfined Compressive Strength (TSF) 1.929 **Axial Strain** 0.53

LAB TECHNICIAN

UNCONFINED COMPRESSION TEST

Project Name: A-Z Sampling Date: 8/12/2020

Location: Abbaspur Kashmir Testing Date: 10/12/2020


BH No: 3 Sample Depth: 5 m

Proving Ring Constant: 1.3 lbs/div

Original Area of Sample: 0.01227 ft²

Rate of Strain: 10.0% / min

Strain dial reading	Dial reading	Load. P (lbs)	Vertical dial difference D L (inch)	Unit strain Î	1-Î	Corrected area (ft 2)	Unit stress (lb / sq. ft)
0	0	0	0	0	1	0	0
15	4.1	5	0.015	0.005	0.995	0.0124	430
30	8.1	11	0.030	0.010	0.990	0.0124	850
50	12.7	17	0.050	0.017	0.983	0.0125	1320
70	19.1	25	0.070	0.023	0.977	0.0126	1970
90	25.7	33	0.090	0.030	0.970	0.0127	2630
110	30.9	40	0.110	0.037	0.963	0.0128	3150
120	34.4	45	0.120	0.040	0.960	0.0128	3490
140	25.0	49	0.140	0.047	0.953	0.0129	3760
160	39.9	52	0.160	0.053	0.947	0.0130	3990
180	38.6	50	0.180	0.060	0.940	0.0131	3830

Unconfined Compressive Strength (TSF) = 1.781 Axial Strain = 0.5

LAB TECHNICIAN

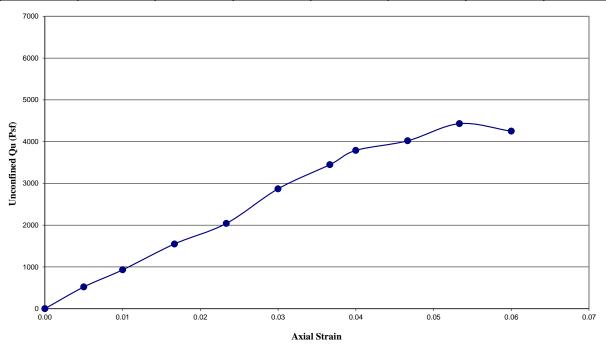
UNCONFINED COMPRESSION TEST

Project Name: A-Z Sampling Date: 8/12/2020

Location: Abbaspur Kashmir

Testing Date: 10/12/2020

BH No: 3


Sample Depth: 12 m

Proving Ring Constant: 1.3 lbs/div

Original Area of Sample: 0.01227 ft²

Rate of Strain: 10.0% / min

Strain dial reading	Dial reading	Load. P (lbs)	Vertical dial difference D L (inch)	Unit strain Î	1-Î	Corrected area (ft 2)	Unit stress (lb / sq. ft)
0	0	0	0	0	1	0	0
15	4.9	6	0.015	0.005	0.995	0.0124	520
30	8.9	12	0.030	0.010	0.990	0.0124	930
50	14.9	19	0.050	0.017	0.983	0.0125	1550
70	19.8	26	0.070	0.023	0.977	0.0126	2040
90	28.0	36	0.090	0.030	0.970	0.0127	2870
110	33.9	44	0.110	0.037	0.963	0.0128	3450
120	37.4	49	0.120	0.040	0.960	0.0128	3790
140	25.0	52	0.140	0.047	0.953	0.0129	4020
160	44.3	58	0.160	0.053	0.947	0.0130	4430
180	42.8	56	0.180	0.060	0.940	0.0131	4250

Unconfined Compressive Strength (TSF) 1.978 **Axial Strain** 0.53

LAB TECHNICIAN